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Regression practical

In this practical we will look at regressing one variable on another variable to explore the relationship between them. This work
builds on the concept of correlation that we have looked at in earlier practicals but here we specify one variable as a response (or
dependent) variable and look at the effect of another predictor (or independent) variable upon it.

The dataset we are using is an excerpt from a cut-down dataset drawn from the Living Costs and Food Survey, available from the
UK Data Service: http://doi.org/10.5255/UKDA-SN-7932-2, and we will be exploring the characteristics of two variables; household
size and total household expenditure (in pounds per week). No conditions are required to use the data; however respondents are
promised that their data will be kept confidential. As a result high values are grouped together to prevent households being
identified by their large household sizes or unusually high expenditure. This protects respondents but it also affects the quality of
the results produced in this workbook. Users who wish to use better quality data are encouraged to explore the full data from the
Living Costs and Food Survey, which is available through the UK Data Service (http://doi.org/10.5255/UKDA-SN-7702-1), for
which users need to register and adhere to some conditions of use.

In this example expenditure is the response variable and hhsize is the predictor variable. This will allow us to understand
whether larger households spend more than smaller households. If so, we will find out how much more, on average, a household
spends for every additional resident in the household.

To begin with we will simply look at some basic summary information about the variables and plot them in a scatterplot in SPSS
which is done as follows:

Select Descriptives from the Descriptive Statistics submenu available from the Analyze menu.

Copy the Total expenditure (top coded, formerly P550tpr)[expenditure] and Household size, number of people
in household (recoded) formerly A049r[hhsize] variables into the Variable(s) box.

Click on the Options button.

Ensure that the Mean, Std. deviation, Minimum and Maximum options are selected only.

Click on the Continue button to return to the main window.

Click on the OK button to run the command.
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The descriptive statistics will then appear as shown below:

Descriptive Statistics

N  Minimum Maximum Mean  Std. Deviation
Total expenditure (top coded, formerly P550tpr) 5144 30.52 1175.00 479.7584 292.36523

Household size, number of people in household (recoded) 1 5 2.33 1.196
formerly A049r 5144
Valid N (listwise) 5144

Here we see a row in the table for each variable. expenditure is the response variable and takes values between 30.52 and
1175.00 with a mean of 479.7584. hhsize is the predictor variable and takes values between 1 and 5 with a mean of 2.33. The
maximum values are artificially low as high values of each variable have been grouped together.

We can next plot these variables against each other following instructions below:

Select Scatter/Dot from the Legacy Dialogs available from the Graphs menu.

Select Simple Scatter and click on Define to bring up the Simple Scatterplot window.

Copy the Total expenditure (top coded, formerly P550tpr)[expenditure] variable into the Y Axis box.

Copy the Household size, number of people in household (recoded)formerly A049r[hhsize] variable into the X
Axis box.

5. Click on the OK button.
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SPSS will then draw a scatterplot of the two variables which can be seen below:
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The scatterplot gives a general idea of the relationship between the two variables and we can look by eye to see if a linear
relationship is suitable. In this example there appears to be a positive relationship as there are more points in the bottom-left and
top-right quarters of the plot than in the top-left and bottom-right corners.

We now need to actually run the linear regression to look at if there is a significant (linear) effect of hhsize on expenditure. This
is done in SPSS as follows:

Select Linear from the Regression submenu available from the Analyze menu.

Copy the Total expenditure (top coded, formerly P550tpr)[expenditure] variable into the Dependent box.
Copy the Household size, number of people in household (recoded) formerly A049r [hhsize] variable into the
Independent(s) box.

Click on the Statistics button.

On the screen appears add the tick for Confidence Interval to those for Estimates and Model fit.

Click on the Continue button to return to the main window.

Click on the Save button.

On the screen appears select the tick for Standardized found under Residuals.

. Click on the Continue button to return to the main window.

0. Click on the OK button to run the command.
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The command will run and five output tables will be presented. The first of which is the Variables Entered/Removed table but as
it is only useful when we do multiple regression we will not show it.

The next table is the Model Summary table.

Model Summary
Model R R Square Adjusted R Square Std. Error of the Estimate

1 449 a 202 202 261.20871

a. Predictors: (Constant), Household size, number of people in household (recoded)formerly A049r

Here we see some fit statistics for the overall model. The statistic R here takes the value .449 and is equivalent to the Pearson
correlation coefficient for a simple linear regression, that is, a regression with only one predictor variable. R square (.202) is simply
the value of R squared (R multiplied by itself) and represents the proportion of variance in the response variable, expenditure
explained by the predictor variables. The table also includes an adjusted R square measure which here takes value .202 and is a
version of R squared that is adjusted to take account of the number of predictors (one in the case of a simple linear regression)
that are in the model.



The next table is the ANOVA table.

ANOVA
Model Sum of Squares df Mean Square F Sig
1 Regression 88771774.744 1 88771774.744 1301.067  .000°
Residual 350838622.056 5142 68229.993
Total 439610396.799 5143

b. Predictors: (Constant), Household size, number of people in household (recoded)formerly A049r

The ANOVA (Analysis of Variance) table is used to look at how well the predictors as a whole can account for differences in the
response variable. It is used in SPSS for many models to show how the variability in the response variable is partitioned between
different explanatory components (which it measures in terms of sums of squares).

Here we see in the sum of squares column that the total sum of squares, which captures the total variance in expenditure is
439610396.800. This can be split into two parts. The regression sum of squares (88771774.744) captures the variability in the
values of expenditure that would be predicted on the basis of the predictor variables alone, so here on the basis of hhsize. The
residual sum of squares (350838622.056) is the variation in the dependent variable that remains unexplained by the predictor
variables. The R-squared that we saw in the earlier table is related to the sum of squares - it expresses the regression (or
explained) SS as a fraction of the total SS i.e. 88771774.744/439610396.800=0.202.

These sums of squares have associated degrees of freedom (df). For the total sum of squares the df is one less than the number
of observations (N - 1, here 5143) due to fitting a mean to the data. The regression sum of squares has df = 1 to account for the 1
predictor in the model. The residual df is then the difference between the total df and the regression df = 5142. The next column is
the mean squares (sums of squares adjusted for dfs) which are used to construct a test statistic, F, shown in the fifth column.
Here we see that F takes value 1301.067 and can be used to test the null hypothesis that there is no linear relationship between
the predictors and the response variable. To do this the value of F needs to be compared with an F distribution with 1 and 5142
degrees of freedom. This test results in a p value that is given in the Sig. column. Here p is quoted as .000 (reported as p < .001)
which is less than the conventional .05 level used to judge significance. We therefore have sufficient evidence to reject the null
hypothesis that the predictors have no effect.

The next table is the Coefficients table.
Coefficients

Unstandardized Standardi 95.0% Confidence
Coefficients zed Interval
for B
Coefficien
_ Lower Upper
Model B sd Eror ts t 59  Bound  Bound
Beta
1 (Constant) 223.903 7.974 28.081 .000 208.271 239.534
Household size, number of people in household (recoded) 3.046 449 36.070 .000 103.906 115.850
formerly A049r 109.878

This table gives the most interesting information about the regression model. We begin with the coefficients that form the
regression equation. The regression intercept (labelled Constant in SPSS) takes value 223.903 and is the value of the regression
line when hhsize takes value 0. The regression slope, the B, takes value 109.878 and is the amount by which we predict that
expenditure changes for an increase in hhsize of one unit. In other words, the model predicts that the fixed household cost
before any residents are accounted for is £224 per week. For every extra person in the household a predicted extra £110 per
week is spent by the household.

Both coefficients have associated standard errors that can be used to assess their significance and also in the case of the slope,
to construct a standardised coefficient. This can be seen under the Beta column and takes value .449 which represents the
predicted change in expenditure in standard deviation units for an increase of one standard deviation in hhsize. The
standardised coefficient beta can be interpreted as a "unit-free" measure of effect size, one that can be used to compare the
magnitude of effects of predictors measured in different units.

To test for the significance of the coefficients we need to form test statistics which are reported under the t column and are simply
B / Std. Error. For the slope the t statistic is 36.070 and this value can be compared with a t distribution to test the null hypothesis
that B = 0. We can see the resulting p value for the test under the Sig. column. Here p is quoted as .000 (reported as p <.001) so
we have sufficient evidence to reject the null hypothesis that the slope coefficient on hhsize is zero. We therefore have significant
evidence to reject the null hypothesis that the slope is zero.

We can also check if the intercept is different from zero though this is often of less interest. For the intercept the t statistic is
28.081 and this value can be compared with a t distribution to test the null hypothesis that the intercept B = 0. We can see the
resulting p value for the test under the Sig. column. Here p is quoted as .000 (reported as p <.001) so we have sufficient evidence
to reject the null hypothesis that the intercept is zero .We therefore have significant evidence to reject the null hypothesis that the
intercept is zero.



The final two columns give 95% confidence intervals for the coefficients, which show a lower bound of 208.271 and an upper
bound of 239.534 for our estimate of the intercept.

Similarly the 95% confidence interval bounds for the hhsize B coefficient are 103.906 and 115.850. Zero does not lie between
these values, consistent with our rejection of the null hypothesis that B = 0.

The final table is the Residuals statistics table.
Residuals Statistics

Minimum Maximum Mean Std. Deviation N

Predicted Value 333.7809 773.2941 479.7584 131.37998 5144
Residual -711.60413 841.21912 .00000 261.18332 5144
Std. Predicted Value -1.111 2.234 .000 1.000 5144
Std. Residual -2.724 3.220 .000 1.000 5144

This table just summarises the predictions and residuals that come out of the regression and it is perhaps easier to look at these
via plots.

As we ticked the box to request that standardised residuals were saved this has resulted in an additional variable, named ZRE_1,
being stored in the dataset at the end of the existing variables (You can see this by viewing the dataset in the SPSS Data Editor
Window). We can use this variable to create some residual plots to assess the fit of the model. We will firstly plot a histogram of
the residuals to check their normality which can be done in SPSS as follows:

1. Select Histogram from the Legacy Dialogs available from the Graphs menu.
2. Copy the Standardized Residual [ZRE_1] variable into the Variable box.

3. Click on the Display normal curve tick box.

4. Click on the OK button to produce the graph.
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Here we hope to see the histogram of residuals roughly following the shape of the normal curve that is superimposed over them.

We can also look at how the distribution of the residuals interacts with the predictor variable to check there is no relationship. We
do this via a scatterplot which can be produced in SPSS as follows:

Select Scatter/Dot from the Legacy Dialogs available from the Graphs menu.

Select Simple Scatter and click on Define to bring up the Simple Scatterplot window.

Copy the Standardized Residual [ZRE_1] variable into the Y Axis box.

Copy the Household size, number of people in household (recoded) formerly A049r[hhsize] variable into the
X Axis box.

5. Click on the OK button and the plot will appear.
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Scatterplot
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Here we hope that the residuals show a random scatter when plotted against the predictor variable and also that their variability is
constant across different values of the predictor variable.

Finally we might like to superimpose the regression line onto the scatterplot we drew earlier of the response against the predictor,
so that the strength of the linear relationship is clear. To do this we will need to use the Chart Editor in SPSS so follow the
following instructions:

1. Locate the earlier scatterplot in the SPSS output window noting you may need to scroll up to find it.

2. Double click with the left mouse button on the plot and it will pop out into a Chart Editor window.

3. On the window click on the 5th button from the left on the bottom row of icons (It will say Add Fit Line at Total if you
hover the mouse over it)

4. On the Properties window that appears remove the tick next to Attach label to line as otherwise the equation is
superimposed on the plot which looks untidy.
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5. Click on the Close button and the line will be added in the Chart Editor window.
6. Finally close the Chart Editor window and the graph in the output window will now have the fixed line as shown
below:
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Note that the scatterplot now also contains the R-squared value which corresponds to the R-squared value we saw in the
regression fit earlier.
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